Deaths due to the Chernobyl disaster

The Chernobyl disaster, considered the worst nuclear disaster in history, occurred on 26 April 1986 at the Chernobyl Nuclear Power Plant in the Ukrainian Soviet Socialist Republic, then part of the Soviet Union, now in Ukraine. From 1986 onward, the total death toll of the disaster has lacked consensus; as peer-reviewed medical journal The Lancet and other sources have noted, it remains contested.[1] There is consensus that a total of approximately 30 people died from immediate blast trauma and acute radiation syndrome (ARS) in the seconds to months after the disaster, respectively, with 60 in total in the decades since, inclusive of later radiation induced cancer.[2][3][4] However, there is considerable debate concerning the accurate number of projected deaths that have yet to occur due to the disaster's long-term health effects; long-term death estimates range from up to 4,000 (per the 2005 and 2006 conclusions of a joint consortium of the United Nations) for the most exposed people of Ukraine, Belarus, and Russia, to 16,000 cases in total for all those exposed on the entire continent of Europe, with figures as high as 60,000 when including the relatively minor effects around the globe. Such numbers are based on the heavily contested linear no-threshold model.[5]

This no-threshold epidemiology problem is not unique to Chernobyl, and similarly hinders attempts to estimate low level radon pollution, air pollution and natural sunlight exposures. Determining the elevated risk or total number of deaths from very low doses is completely subjective, and while much higher values would be detectable, lower values are outside the statistically significant reach of empirical science and are expected to remain unknowable.[6][7]

From model-based epidemiological studies, the incidence of thyroid cancer cases due to the accident by 2065 compared with other cancer-inducing sources (diet etc.) across Europe, is roughly 1 in 10,000 as a probable worst-case scenario.[8][9] Thyroid cancer is relatively amenable to treatment for several decades. Attributing a 1% mortality rate by Tuttle et al. to the 16,000 cases across Europe as predicted by Cardis et al. results in a likely final total death toll from radiation-induced thyroid cancer of around 160.[8][10]

There have been no validated increases in solid cancer reported from the liquidator cohorts. The liquidators were adult at exposure and the vast majority of them received doses under 100 mSv, which is lower than normal background levels of radiation.[11]

It should also be noted that a paper in Science has stated that there have been no transgenerational effects of radiation exposure in children born of those working as liquidators. This study used whole genome sequencing in a cohort of parent and child blood samples.[12]

  1. ^ Parfitt, Tom (26 April 2006). "Opinion remains divided over Chernobyl's true toll". The Lancet. 367 (9519): 1305–1306. doi:10.1016/S0140-6736(06)68559-0. PMID 16637114. S2CID 37774238. Retrieved 8 May 2019.
  2. ^ "The impact of Chernobyl's nuclear disaster 33 years later". PBS NewsHour Weekend. Public Broadcasting Service. 21 April 2019. Retrieved 9 May 2019.
  3. ^ Wellerstein, Alex (26 April 2016). "The Battles of Chernobyl". The New Yorker. Retrieved 10 May 2019.
  4. ^ Health effects due to radiation from the Chernobyl accident (Annex D of the 2008 UNSCEAR Report) (PDF), archived (PDF) from the original on 4 August 2011, retrieved 11 January 2016
  5. ^ Ritchie, Hannah (24 July 2017). "What was the death toll from Chernobyl and Fukushima?". Our World in Data. Retrieved 8 May 2019.
  6. ^ Smith, Jim T (3 April 2007). "Are passive smoking, air pollution and obesity a greater mortality risk than major radiation incidents?". BMC Public Health. 7 (1): 49. doi:10.1186/1471-2458-7-49. PMC 1851009. PMID 17407581.
  7. ^ Rahu, Mati (February 2003). "Health effects of the Chernobyl accident: fears, rumours and the truth". European Journal of Cancer. 39 (3): 295–299. doi:10.1016/S0959-8049(02)00764-5. PMID 12565980.
  8. ^ a b Cardis, Elisabeth; Krewski, Daniel; Boniol, Mathieu; Drozdovitch, Vladimir; Darby, Sarah C.; Gilbert, Ethel S.; Akiba, Suminori; Benichou, Jacques; Ferlay, Jacques; Gandini, Sara; Hill, Catherine (15 September 2006). "Estimates of the cancer burden in Europe from radioactive fallout from the Chernobyl accident". International Journal of Cancer. 119 (6): 1224–1235. doi:10.1002/ijc.22037. ISSN 0020-7136. PMID 16628547. S2CID 37694075.
  9. ^ Thomas, Gerry (9 July 2019). "Let's separate the urban myths from Chernobyl's scientific facts". The Sydney Morning Herald. Retrieved 26 February 2022.
  10. ^ Tuttle, R. M.; Vaisman, F.; Tronko, M. D. (May 2011). "Clinical presentation and clinical outcomes in Chernobyl-related paediatric thyroid cancers: what do we know now? What can we expect in the future?". Clinical Oncology. 23 (4): 268–275. doi:10.1016/j.clon.2011.01.178. ISSN 1433-2981. PMID 21324656.
  11. ^ Cite error: The named reference oxfordRestatement5 was invoked but never defined (see the help page).
  12. ^ Yeager, Meredith; Machiela, Mitchell J.; Kothiyal, Prachi; Dean, Michael; Bodelon, Clara; Suman, Shalabh; Wang, Mingyi; Mirabello, Lisa; Nelson, Chase W.; Zhou, Weiyin; Palmer, Cameron (14 May 2021). "Lack of transgenerational effects of ionizing radiation exposure from the Chernobyl accident". Science. 372 (6543): 725–729. Bibcode:2021Sci...372..725Y. doi:10.1126/science.abg2365. ISSN 1095-9203. PMC 9398532. PMID 33888597. S2CID 233371673.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search